CLASS-11
ALGEBRA OF SETS

Algebra of Sets (Summary of Laws)

Sets under the operations of union, intersection, and complements, satisfy the laws listed below. You can verify these laws by drawing Venn Diagrams.

If A, B, C are any sets and ξ is the universal set, then –

1.   (A’)’ = A


2.   ϕ’ = ξ

=>  ξ’ = ϕ


3.   A ∪ ϕ = A

=>  A ∩ ξ = A


4.  A ∪ ξ = ξ        (Indempotent Laws)

=>  A ∩ ϕ = ϕ


5.   A ∪ A = A

=>   A ∩ A = A


6.   A ∪ A’ξ

=>   A ∩ A’ = ϕ


7.    (A ∪ B) ∪ C = A ∪ (B ∪ C)          [Associative Laws]

=>    (A ∩ B) ∩ C = A ∩ (B ∩ C)


8.     A ∪ B = B ∪ A                    [Commutative Laws]

=>     A ∩ B = B ∩ A


9.    A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)         [Distributive Laws]

=>   A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Union & Intersection are distributive over intersection and union respectively.


10.  (A ∪ B)’ = A’ ∩ B’               [De Morgan’s Laws]

=>   (A ∩ B)’ = A’ ∪ B’

Your second block of text...