CLASS-4
RECIPROCAL OF FRACTION

RECIPROCAL FRACTIONS -

Two numbers are reciprocals of each other if their product is one. On the way, we can say that if numerator and denominator of a fraction is multiplied by another fraction whose numerator is equal to previous fraction's denominator and this denominator same or equal to numerator of previous fraction, and obviously the product of the said two fraction is 1.

So, we can conclude that, reciprocal is a inverse of given fraction.


RECIPROCAL OF A GIVEN FRACTION -


       𝑵𝒖𝒎𝒆𝒓𝒂𝒕𝒐𝒓 (N)                    𝑫𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓 (D)

  --------------------  will be  -------------------- (the inverse)

      𝑫𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓 (D)                   𝑵𝒖𝒎𝒆𝒓𝒂𝒕𝒐𝒓 (N)



NOTE: -

(1) The reciprocal of one is itself.

(2) Zero does not have any reciprocal.


                                                              9

Example.1)  Find the reciprocal of -------

                                         17

                                            Numerator        Denominator

Ans.) As we know that, Reciprocal = ------------- = -------------

                                           Denominator        Numerator

                9           17

 So,  ------- = --------  (Inverse)         (Ans.)

          17           9




                                                                15

Example.2)  Find the reciprocal of --------

                                           7

                                                                   N           D

Ans.)  As we know that, Reciprocal = ------- = -------   (Inverse)

                                             D           N

                           15           7

          So,  ------- = -------     (Inverse)       (Ans.)

                   7           15