COMPARISON OF A FRACTION –
Suppose there are some Fractions, we have to find out Greater than and Less than. If so, we are providing some idea which may help you out to find the solution-
1) Among some fractions with the same ‘Denominator’, the one with greater ‘Numerator’ is greater of others.
9 5 3
Example.= --------- > --------- > ---------
22 22 22
2) Among some fractions with the same ‘Numerator’, the one with smaller ‘Denominator’ is greater of the others.
6 6 6
Example.= -------- > -------- > --------
12 24 36
COMPARING TWO FRACTION VIA CROSS MULTIPLICATION –
If X / Y and U / V are two given fractions,
Then cross multiplies as follows -
We can find cross product XV and YU.
X U
If XV > YU , then --------- > ---------
Y V
X U
If XV < YU , then --------- < ---------
Y V
X U
If XV = YU , then --------- = --------
Y V
COMPARING OF FRACTION
In between many of the Fraction if we want to compare then we have to consider the following step-
1) Change the given Fractions into ‘Like Fraction’ even mix Fraction also.
2) In these ‘Like Fraction’, the one with larger ‘Numerator’ will be bigger, and the smaller ‘Numerator’ will be smaller.
3) All the ‘Like Fractions’ may be arranged in Ascending or Descending order.
4) In this process all the given Fractions may be arranged in the desired order.
Compare the Fractions.-
Q.1) Compare these fractions 6/5, 8/6, 7/15, 12/20, 15/18
6 8 7 12 15
Ans.) Fractions are => -------, -------,-------,--------, -------
5 6 15 20 18
LCM of 5, 6, 15, 20, 18 =>
So, LCM of 5, 6, 15, 20, 18
=> 5 x 3 x 2 x 2 x 3 = 180
Step.1) Find the LCM of the ‘Denominator’ of the given fraction 5, 6, 15, 20, 18.
6 8 7 12 15
=> -------, -------, -------, --------, --------
5 6 15 20 18
Step.2) Divide obtained LCM which is 180 by ‘Denominator’ of the each given fraction and multiply obtained ‘Quotient’ from ( LCM ÷ Denominator ) with each ‘Numerator’ of the given fraction.
6 6 x 36 216
------- = ---------- ( where 180 ÷ 5 = 36 ) = ---------
5 5 x 36 180
8 8 x 30 240
------ = ----------- ( where 180 ÷ 6 = 30 ) = ---------
6 6 x 30 180
7 7 x 12 84
------- = ----------- ( where 180 ÷ 15 = 12 ) = --------
15 15 x 12 180
12 12 x 9 108
------- = ---------- ( where 180 ÷ 20 = 9 ) = ---------
20 20 x 9 180
15 15 x 10 150
------- = ---------- ( where 180 ÷ 18 = 10 ) = --------
18 18 x 10 180
So, =>
240 216 150 108 84
--------, -------, -------, -------, ------- (LIKE FRACTION)
180 180 180 180 180
8 6 15 12 7
Thus,=> ------, ------,------,------,------ (LIKE FRACTION)
6 5 18 20 15