CLASS-7
ALGEBRAIC DIVISION TO POLYNOMIAL BY MONOMIAL

Division of a Polynomial by a Monomial

The quotient of the monomials = ( numerical quotient of their coefficient) X ( quotient of their literal coefficient)

To divide the polynomial by monomial, divide each term of the polynomial by the monomial and add the partial quotient.

When we divide a polynomial by another, you can check your answer by using the relation,

   Dividend = Divisor X Quotient + Remainder

Divide each term of the polynomial by the monomial and then add all the partial quotients thus obtained –

Example –

      1)    ( 25 x⁷y⁶ - 15 x⁵y⁷ ) ÷ 10 x⁴y⁵

                25 x⁷y⁶                15 x⁵y⁷

      =    --------------  -  --------------

                10 x⁴y⁵                10 x⁴y⁵

 

                5                          3

      =    --------  x⁷⁻⁴ y⁶⁻⁵  -  --------   x⁵⁻⁴y⁷⁻⁵

                2                          2

 

       =   5/2  xy¹ - 3/2 x¹ y²  

 

       =   5/2 xᶟ y - 3/2 x y²             (Ans.)

 

 

 

 

  2)    ( 45 x⁸ y⁵ - 30 x⁶ y⁷ ) ÷ 15 xᶟ y⁴


                45 x⁸ y⁵               30 x⁶ y⁷

      =    ---------------  -  -------------

                15 x y⁴                15 x y⁴

 

                45                           30

      =    ---------   x⁸⁻ y⁵⁻⁴   -  ----------   x⁶⁻ y⁷⁻⁴

                15                           15

 

      =   3  x⁵ y¹ -  2 x y                (Ans.)