CLASS-7
CLOSURE PROPERTY OF MULTIPLICATION OF RATIONAL NUMBER

CLOSURE PROPERTY OF MULTIPLICATION OF RATIONAL NUMBER -

The closure property states that the product of any two rational numbers is also a rational number. This property ensures that when you multiply two rational numbers, the result will always be a rational number, meaning it can be expressed in the form a/b, where a and b are integers and b≠0.

Proof of the Closure Property -

Let's take two rational numbers:-

                 a           c

             ------- & -------

                 b           d

where a, b, c, and d are integers, b ≠ 0 and d ≠ 0

The product of these two rational numbers is:-

             a           c            a x c

         ------- X ------- = ----------

             b           d            b x d


In this product:-

  • a ⋅ c is an integer because the product of two integers is always an integer.
  • b ⋅ d is an integer because the product of two non-zero integers is always a non-zero integer.

Thus, the result (a ⋅ c)/(b ⋅ d) is a rational number because both the numerator and the denominator are integers, and the denominator is not zero.

Sample Illustration -

Example.1) Simple multiplication -

              2           3

Consider ------- & -------

              5           4

Ans.)

               2           3

We have, ------- & -------

               5           4

Their product is -

        2           3           6           3

    ------- X ------- = ------- = ------       

        5           4           20         10

3/10 is a rational number.     (Ans.)


Example.2) Negative Rational Number -

           - 5           4

Consider ------- & -------

              8           7

Ans.)

                                      - 5           4

As per given condition, we have  ------- & -------

                                        8           7

Their product is -

      - 5           4          - 5           - 5

    ------- X ------- = --------- = --------       

        8           7          (2 X 7)         14

- 5/14 is a rational number.  (Ans.)


Example.3) Mixed signs -

             6        - 2

Consider ------ & -------

           - 7          9

Ans.)

                                     6         - 2

As per the condition, we have ------- & -------

                                   - 7           9

           6         - 2           2 X (- 2)         - 4

       ------- X ------- = ------------- = ------- 

         - 7            9          (- 7) X 3         - 21

                                                                                    4

                                                  = -------    (Ans.)

                                                       21