DISTRIBUTIVE PROPERTY OF MULTIPLICATION OVER ADDITION -
The distributive property of multiplication over addition is a fundamental property of numbers that combines both addition and multiplication. It states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products. Mathematically, for any numbers a, b, and c:-
a x (b + c) = (a x b) + (a x c)
Explanation -
For any three rational number
a c e
------, ------, and -----, we have:-
b d f
a c e a c a e
------ x (------ + ------) = (----- x -----) + (----- x -----)
b d f b d b f
Example:-
- 2 3 5
Let, a = -----, b = -----, c = ------
3 4 - 6
Let prove, a x (b + c) = (a x b) + (a x c)
- 2 3 5
Left side :- a x (b + c) = ------ x (------ + ------)
3 4 - 6
- 2 3 5
= ------- x (------ - ------)
3 4 6
- 2 (3 x 3) - (5 x 2)
= ------ x {-----------------}
3 12
- 2 (9 - 10)
= ------ x -----------
3 12
- 2 - 1 (-) (-) 2
= ------ x ------ = --------------
3 12 36
1
= -------
18
- 2 3 - 2 5
Right Side :- (a x b) + (a x c) = (------ x ------) + (------ x ------)
3 4 3 - 6
- 1 - 5
= ------ - -------
2 9
{(-1) x 9} - {(-5) x 2}
= ------------------------
18
(-9) + 10 1
= ------------ = ------
18 18