NON-ASSOCIATIVE PROPERTY OF DIVISION OF RATIONAL NUMBER -
The non-associative property of division means that when dividing three rational numbers, the grouping (or association) of the numbers affects the result. In other words, the way in which the numbers are grouped in the operation matters, and changing the grouping can change the result. This contrasts with addition and multiplication, which are associative operations.
Non-associative Property of Division:-
For rational numbers a, b, and c:-
a b
(-----) ÷ c ≠ a ÷ (-----)
b c
Example.1) Let, a = 3/4, b = 5/7, c = 7/9
Ans.)
a 3/4 7
L.H.S = (-----) ÷ c = (-------) ÷ ------
b 5/7 9
3 5 7
= (------ ÷ ------) ÷ ------
4 7 9
3 7 7
= (------ x -----) ÷ ------
4 5 9
21 7 21 9
= ------ ÷ ------ = ------- x ------
20 9 20 7
27
= ------
20
b 3 5/7
R.H.S = a ÷ (------) = ------ ÷ (------)
c 4 7/9
3 5 7
= ------- ÷ (------ ÷ ------)
4 7 9
3 5 9
= ------ ÷ (----- x ------)
4 7 7
3 45 3 49
= ------ ÷ ------ = ------ x ------
4 49 4 45
49
= ------
60
So, L.H.S ≠ R.H.S (Proven)
Example.2) Example with Whole Numbers:
Let a = 12, b = 3, and c = 2.
Ans.)
a 12
Calculate:- (-----) ÷ c = (------) ÷ 2 = 4 ÷ 2 = 2
b 3
b 3 2
Now calculate:- a ÷ (-----) = 12 ÷ (------) = 12 x ----- = 8
c 2 3
Clearly, 2 ≠ 8 .
So, L.H.S ≠ R.H.S (Proven)
Why Division is Non-associative:-
Importance of the Non-associative Property:-
Understanding that division is non-associative is crucial for:Key Points to Remember
Key Points to Remember:-
In summary, the non-associative property of division in rational numbers highlights the importance of operand grouping in division operations, ensuring accurate calculations and interpretations in both mathematical and practical applications.