CLASS-8
IMPORTANT RULES OF VENN DIAGRAM

IMPORTANT RULES OF VENN DIAGRAM 

we can arrive at certain general relations between the cardinal numbers of set, which are known as cardinal properties of the set.

1)  n(A) + n(B) = 5 + 5 = 10,   n(A U B) = 8,   n(A B) = 2

 n (A U B) + n(A ∩ B) = n(A) + n(B)

or, n (A U B) = n(A) + n(B) - n(A ∩ B)

As we all know that, if A & B are disjoint sets, therefore for disjoint set n(A B) = 0

 n (A U B) = n (A) + n (B)

 

2)  n(A) =  5,   n(A)’ =  3,  n(U) = 8.

 n (A) + n (A)’ = n (U)

 

3)  n(A U B) = 8,   n (B) = 5,  n ( A – B ) = 3, therefore

                 n (A U B) = n (B) + n (A – B)

 

4)  n(A B) = 2 ,  n(A) = 5,  n( A – B ) =  3, therefore

         n(A) = n(A B) + n( A – B )

 or,   n (A – B) = n (A) - n (A ∩ B)

 

5)  n(A U B) = 8,  n(A B) = 2,  n (A B)  =  3,  n ( B – A ) = 3

 n (A B) + n ( B – A ) = n(A U B) - n(A B)

or,  n (A U B) = n (A – B) + n (B – A) + n (A ∩ B)