CLASS-8
PROBLEM & SOLUTION OF SETS

PROBLEM & SOLUTION OF SETS

Example.A)

Let A = { letters of the word BADMINTON } and B = { letters of the word CRICKET }

Find  1) A B,  2) A U B,  3) B U A,  4)  B A,  5) A – B,  6) B – A  

Answer)

        1)   A B   

As per the given condition, we have got A = { letters of the word BADMINTON } and  B = { letters of the word CRICKET }

A = { letters of the word BADMINTON } = { B, A, D, M, I, N, T, O }

B = { letters of the word CRICKET } =  { C, R, I, K, E, T }

As per the given instruction, we have to find out 

   A B = { B, A, D, M, I, N, T, O } { C, R, I, K, E, T }                                                                                                        =  { I, T }



       2)   A U B

Ans.) As per the given condition, we have got A = { letters of the word BADMINTON } and  B = { letters of the word CRICKET }

 A = { letters of the word BADMINTON }

    = { B, A, D, M, I, N, T, O }

 B  = { letters of the word CRICKET } =  { C, R, I, K, E, T }

  As per the given instruction, we have to find out 

   A U B =  { B, A, D, M, I, N, T, O }  U { C, R, I, K, E, T }                                                                                                       =   { B, A, D, M, I, N, T, O, C, R, K, E }


 

      3)   B U A

Ans.) As per the given condition, we have got A = { letters of the word BADMINTON } and B = { letters of the word CRICKET }

 A = { letters of the word BADMINTON }

    =  { B, A, D, M, I, N, T, O }

 B  = { letters of the word CRICKET } 

    =  { C, R, I, K, E, T }

As per the given instruction, we have to find out 

  B U A =  { C, R, I, K, E, T } { B, A, D, M, I, N, T, O }                                                                                                        =  { C, R, I, K, E, T, B, A, D, M, N, O }

 

        4)    B A

Answer) As per the given condition, we have got A = { letters of the word BADMINTON } and  B = { letters of the word CRICKET }

  A = { letters of the word BADMINTON }

     = { B, A, D, M, I, N, T, O }

  B  = { letters of the word CRICKET } 

     =  { C, R, I, K, E, T }

    As per the given instruction, we have to find out 

 B  A = { C, R, I, K, E, T }  { B, A, D, M, I, N, T, O }                                                                                                         = { I, T }

 

      5)    A – B

Answer) As per the given condition, we have got A = { letters of the word BADMINTON } and B = { letters of the word CRICKET }

 A = { letters of the word BADMINTON }

    =  { B, A, D, M, I, N, T, O }

 B  = { letters of the word CRICKET }  =  { C, R, I, K, E, T }

    As per the given instruction, we have to find out  A – B 

    A – B  =  { B, A, D, M, I, N, T, O } – { C, R, I, K, E, T }

            =  { B, A, D, M, N, O }

 

     6)    B – A

Answer) As per the given condition, we have got A = { letters of the word BADMINTON } and B = { letters of the word CRICKET }

 A = { letters of the word BADMINTON } = { B, A, D, M, I, N, T, O }

 B = { letters of the word CRICKET } =  { C, R, I, K, E, T }

    As per the given instruction, we have to find out  A – B 

   B – A  =  { C, R, I, K, E, T } – { B, A, D, M, I, N, T, O }

           =  { C, R, K, E }

 

 

 

Example.B)

If U = { x : x W and  6 ≤ x ≤ 12 } , A = { 6, 8, 9 } , B = { 7, 8, 11 } and C = { 6 } find the following sets.

1)  A’ ,  2)   B’ ,  3)  C’ ,  4)  A – B ,   5)  (B U C )’ ,  6)  ( A B )’ ,  7)  A – ( B U C ),   8)   A – ( B C ).

 

      1)    A’    

Answer) As per the given condition,  

      U = { x : x W and  6 ≤ x ≤ 12 } ,

      U = { 6, 7, 8, 9, 10, 11, 12 } and  A = { 6, 8, 9 }

As per the rule of complement of set 

 A’ =  U – A  =  { 6, 7, 8, 9, 10, 11, 12 } –  { 6, 8, 9 }     

                =  { 7, 10, 11, 12 }

                 

       2)   B’   

Answer) As per the given condition,  

       U = { x : x W and  6 ≤ x ≤ 12 },

       U = { 6, 7, 8, 9, 10, 11, 12 } and  B = { 7, 8, 11 }

As per the rule of complement of set 

    A’ =  U – A  =  { 6, 7, 8, 9, 10, 11, 12 }  –  { 7, 8, 11 }                                                                                                            =  { 6, 9, 10, 12 }

 

         3)   C’   

Answer) As per the given condition,

         U = { x : x W and  6 ≤ x ≤ 12 },

         U = { 6, 7, 8, 9, 10, 11, 12 } and  C = { 6 }

As per the rule of complement of set 

    A’ =  U – A  =  { 6, 7, 8, 9, 10, 11, 12 } –  { 6 }       

                    =  { 7, 8, 9, 10, 11, 12 }



       4)  A – B     

Answer) As per the given condition, A = { 6, 8, 9 } , B = { 7, 8, 11 },

       we have to find out A – B

    So,  A – B = { 6, 8, 9 } – { 7, 8, 11 }  =  { 6, 9 }



       5)  (B U C )’ 

Answer) As per the given condition, 

     U = { x : x W and  6 ≤ x ≤ 12 },

     U = { 6, 7, 8, 9, 10, 11, 12 }, B = { 7, 8, 11 }, C = { 6 }

         First, we have to find , B U C

  So,  B U C = { 7, 8, 11 } U { 6 }  =  { 6, 7, 8, 11 }                                                           [ As per laws of Union Set ]

  Now, (B U C )’ = U - (B U C )  

                   = { 6, 7, 8, 9, 10, 11, 12 } - { 6, 7, 8, 11 }                                         [ As per Laws of Complement Set ]

                   =  { 9, 10, 12 }                      

   So, (B U C )’  =  { 9, 10, 12 }


 

        6)  ( A B )’  

 Answer) As per the given condition,

    U = { x : x W and  6 ≤ x ≤ 12 },

    U = { 6, 7, 8, 9, 10, 11, 12 }, B = { 7, 8, 11 }, C = { 6 }

          First, we have to find, B U C

           So,  B C  =  { 7, 8, 11 } { 6 }

                         =  φ                 [ Overlapping rules ]

     Now,  ( A B )’  =  U - ( A B )

                         =  { 6, 7, 8, 9, 10, 11, 12 }  - φ

                         =  { 6, 7, 8, 9, 10, 11, 12 }  =  U

       So, ( A B )’   =   U

 

       7)  A – ( B U C ),   

Answer) As per the given condition,

    U = { x : x W and  6 ≤ x ≤ 12 },

    A = { 6, 8, 9 }, B = { 7, 8, 11 } and C = { 6 }

  We have to find out =  ( B U C )

       ( B U C ) =  { 7, 8, 11 } U { 6 }  =  { 6, 7, 8, 11 }

     Now,  A – ( B U C )  =  { 6, 8, 9 } - { 6, 7, 8, 11 }

                             =  { 9 }                  

                                                                                        

 

       8)  A – ( B C )

Answer ) As per the given condition, 

       U = { x : x W and  6 ≤ x ≤ 12 },

       A = { 6, 8, 9 }, B = { 7, 8, 11 } and C = { 6 }

           B C  =  { 7, 8, 11 } { 6 }  =  φ

     Now,  A – ( B C )  =  { 6, 8, 9 } – φ

                             =  { 6, 8, 9 }  

                             =   A

        So, A – ( B C )  =  A

 

 

Example. C)

Let U = { x : x N and 2 ≤ x ≤ 12 }, A = { x : x is an even number }, B = { x : x is a multiple of 3}, and C = { x : x is a multiple of 4 }, verify the following  1) ( A U B )’ = A’ B’ ,  2) ( A B )’ = A’ U  B’ ,  3) A U ( B C ) = ( A U B ) ( A U C ),  4) A ( B U C ) = ( A B ) U ( A C )


 

    1)   ( A U B )’ = A’ B’

Answer) As per the given condition, we can find,

U = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 },

A = { 2, 4, 6, 8, 10, 12 },

B = { 3, 6, 9, 12 },

C = { 4, 8, 12 }

Here we consider ( A U B )’ = 1st Part  and  A’ B’ = 2nd Part  

 1st Part  

So, ( A U B )  =  { 2, 4, 6, 8, 10, 12 }  U  { 3, 6, 9, 12 } 

                 =  { 2, 3, 4, 6, 8, 9, 10, 12 }

     ( A U B )’  =  U -  ( A U B ) 

                 =   { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } – { 2, 3, 4, 6, 8, 9, 10, 12 }

                  =   { 5, 7, 11 }

 

 2nd Part

So,  A’ B’  =  ( U – A ) ∩  ( U – B ) 

{ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } – { 2, 4, 6, 8, 10, 12 } ∩ U – B ) 

= { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } – { 2, 4, 6, 8, 10, 12 } { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } – { 3, 6, 9, 12 }

=  { 3, 5, 7, 9, 11 }  ∩  { 2, 4, 5, 7, 8, 10, 11 }

=  { 5, 7, 11 }

So, we can observe that  1st Part = 2nd Part

                        ( A U B )’ =  A’ B’    (Proven)

 

 

       2)  ( A B )’ = A’ U  B’  

Answer) As per the given condition, we can find , U = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }, A = { 2, 4, 6, 8, 10, 12 }, B = { 3, 6, 9, 12 }, C = { 4, 8, 12 }

Here we consider ( A B )’ = 1st Part  and  A’ U B’ = 2nd Part

 1st Part 

 ( A B ) = ( A B ) =  { 2, 4, 6, 8, 10, 12 } { 3, 6, 9, 12 }

                         =  { 6, 12 }

  ( A B )’  =  U - ( A B ) 

               =  { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } – { 6, 12 }

               =  { 2, 3, 4, 5, 7, 8, 9, 10, 11 }

 

 2nd Part  

  A’ U  B’  = ( U – A )  U ( U – B )

=  { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } – { 2, 4, 6, 8, 10, 12 } U { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } – { 3, 6, 9, 12 }

=  { 3, 5, 7, 9, 11 }  U  { 2, 4, 5, 7, 8, 10, 11 }   

=   { 2, 3, 4, 5, 7, 8, 9, 10, 11 }

      So, we can observe that  1st Part = 2nd Part

                       ( A B )’ = A’ U  B’      (Proven)

 

 

     3)  A U ( B C )  =  ( A U B ) ( A U C ) 

Answer) As per the given condition, we can find, U = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }, A = { 2, 4, 6, 8, 10, 12 }, B = { 3, 6, 9, 12 }, C = { 4, 8, 12 }

Here we consider  A U ( B C ) = 1st Part 

      and  ( A U B ) ( A U C ) = 2nd Part

 1st Part 

A U ( B C )  =  A U { 3, 6, 9, 12 } ∩  { 4, 8, 12 } 

                 =  A U { 12 }

                 =  { 2, 4, 6, 8, 10, 12 } U { 12 }

                 =  { 2, 4, 6, 8, 10, 12 }

So,  A U ( B C ) =  { 2, 4, 6, 8, 10, 12 }

    

 2nd Part 

         ( A U B ) ( A U C ) 

=  { 2, 4, 6, 8, 10, 12 } U { 3, 6, 9, 12 } ∩ { 2, 4, 6, 8, 10, 12 } U { 4, 8, 12 }

=  { 2, 3, 4, 6, 8, 9, 10, 12 } { 2, 4, 6, 8, 10, 12 }

=   { 2, 4, 6, 8, 10, 12 }

So, we can see that, 1st Part = 2nd Part

 So, now we can say -   

  A U ( B C ) =  ( A U B ) ( A U C )    (Proven)

 

 

      4)   A ( B U C ) =  ( A B ) U ( A C )

Answer) As per the given condition, we can find , U = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }, A = { 2, 4, 6, 8, 10, 12 }, B = { 3, 6, 9, 12 }, C = { 4, 8, 12 }

Here we consider  A ( B U C ) = 1st Part 

    and   ( A B ) U ( A C )  = 2nd Part

1st Part  

A ( B U C )  =   A { 3, 6, 9, 12 } U { 4, 8, 12 } 

                 =   A { 3, 4, 6, 8, 9, 12 }

                 =   { 2, 4, 6, 8, 10, 12 } { 3, 4, 6, 8, 9, 12 }

                 =   { 4, 6, 8, 12 }

So,  A ( B U C ) =  { 4, 6, 8, 12 }

 

 2nd Part  

 ( A B ) U ( A C )

=  { 2, 4, 6, 8, 10, 12 } { 3, 6, 9, 12 }  U  ( A C )

=  { 6, 12 } U { 2, 4, 6, 8, 10, 12 }  { 4, 8, 12 }

{ 6, 12 } U { 4, 8, 12 }

=  { 4, 6, 8, 12 }

So, we can observe that, 1st Part = 2nd Part

So,  A ( B U C )  =  ( A B ) U ( A C )     (Proven)