PROBLEM & SOLUTION OF CROSS MULTIPLICATION -
Example.1) Solve the system of equations, 2x – 3y + 4 = 0, 3x + y + 5 = 0 by the method of cross multiplications.
Ans.) The given equations are –
2x – 3y + 4 = 0 ……………………..(i)
3x + y + 5 = 0 ……………………..(ii)
By cross multiplication, we have –
x y 1
=> ---------------- = ----------------- = -----------------
(2 X 1) – {3 X (-3)} {(-3) X 5} – (1 X 4) (4 X 3) – (5 X 2)
x y 1
=> --------------- = --------------- = ----------------
2 + 9 -15 – 4 12 – 10
x y 1
=> ----------- = ------------ = ----------
11 -19 2
Hence, x = 11/2, and y = -19/2 is the required solution. (Ans.)
Example.2) Solve the system of equations 2x – 3y = 12, 3x + 2y = - 5 by the method of cross multiplications.
Ans.) The given equations are –
2x – 3y = 12
=> 2x – 3y – 12 = 0 ………………………..(i)
And, 3x + 2y = - 5
=> 3x + 2y + 5 = 0 …………………..(ii)
By cross multiplication, we have –
x y 1
=> ----------------- = ------------------ = ----------------
(2 X 2) – {3 X (-3)} {(-3) X 5} – {(-12) X 2} {(-12) X 3} – (5 X 2)}
x y 1
=> ------------ = -------------- = --------------
4 + 9 - 15 + 24 - 36 – 10
x y 1
=> --------- = --------- = ----------
13 9 - 46
Hence, x = - 13/46, and y = - 9/46 is the required solution. (Ans.)
5 2
Example.3) solve the system of equations ------- - ------ + 1 = 0,
x + y x – y
15 7
--------- + -------- = 10 ( x≠y )
x + y x – y
Ans.) Equations given –
5 2
--------- - --------- + 1 = 0 ........................ (i)
x + y x – y
15 7
---------- + --------- = 10 ........................ (ii)
x + y x – y
1 1
Let, u = ----------, and v = ---------- we get -
x + y x – y
5u – 2v + 1 = 0 ...................(iii)
15u + 7v – 10 = 0.....................(iv)
By cross multiplication, we have –
u v 1
=> ---------------- = ----------------- = -----------------
(5 X 7) – {15 X (-2)} {(-2) X (-10)} – (1 X 7) (1 X 15) – {(-10) X 5)}
u v 1
=> ------------- = --------------- = ---------------
(35 + 30) (20 – 7) (15 + 50)
u v 1
=> ---------- = ---------- = ----------
65 13 65
Or, u = 1
Replacing, x + y = 1
So, x + y – 1 = 0 ………………….. (v)
And, v = 1/5
Replacing, x – y = 5
So, x – y – 5 = 0 …………………….(vi)
By cross multiplication, we have –
x y 1
=> ----------------- = ----------------- = -----------------
{1 X (-1)} – (1 X 1) {1 X (-5)} – {(-1) X (-1)} {(-1) X 1} – {1 X (-5)}
x y 1
=> ------------- = --------------- = ----------------
(-1 – 1) (-5 – 1) (-1 + 5)
x y 1
=> ----------- = ------------ = -----------
- 2 - 6 4
So, x = (-2)/4 = - 1/2
And, y = (-6)/4 = - 3/2
Hence, x = - 1/2, and y = - 3/2 is the required solution. (Ans.)