CLASS-9
PROBLEM & SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

Problem & Solution Of Simultaneous Linear Equations –


                       5           6               3            2

Example.1) Solve ------- + ------- = 4, -------- - ------- = 6

                     x + y       x – y           x + y        x – y

Ans.)  The given equations ara –

         2              6                  

    --------- + --------- = 4  …………………. (i)

       x + y          x – y               

 

         3              2

    --------- - --------- = 6 …………………… (ii)

       x + y          x – y

               1                  1

putting,  -------- = u,   --------- = v, and we get –

             x + y              x – y

so,     2u + 6v = 4 …………………….(iii)

        3u – 2v = 6 ……………..…….. (iv)

Now, we will multiply 3 in (iv), and we get –

        9u – 6v = 18 ………………..(v)

Now, we will add (iii) & (v), and we will get –

                     2u + 6v = 4

                     9u – 6v = 18

                 -------------------

                         11u  =  22

=>                           u =  2

            1              2

=>   ---------- = ---------

          x + y            1


=>     2x + 2y = 1 …………….. (vi)

 

now, we will substitute u in (iii)

     3u – 2v = 6

=>  (3 X 2) – 2v = 6

=>    6 – 2v = 6

=>      2v = 0

=>       v = 0

          1

=>  --------- = 0

        x - y  

=>     x – y = 0  ……………(vii)

Now, we will multiply 2 in (vii), and we get –

             2x – 2y = 0 ……………. (viii)

Now, we will add (vi) & (viii), and get –

            2x + 2y = 1

            2x – 2y = 0

         ----------------

               4x  =  1

      =>        x  =  1/4

Substitute the value of x in (vii), and we get –

            x – y = 0

=>        1/4 – y = 0

=>              y  =  1/4

Hence, x = 1/4y = 1/4 is the solution of the given equations.  (Ans.)


When the given equations in x & y are such that the coefficients of x & y in one equation are interchanged in the other. In such cases, once we add them and once we subtract them to obtain them in the form of x + y = a and x – y = b. These equations can now be easily solved.


Example.)  Solve => 37x + 41y = 70,  41x + 37y = 86

Ans.) The given equations are –

                 37x + 41y = 70 ………………….. (i)

                 41x + 37y = 86 …………………….(ii)

Adding (i) & (ii) we get –

                 37x + 41y = 70

                 41x + 37y = 86

             --------------------

                 78x + 78y = 156

=>       78 (x + y) = 156

=>          x + y = 2 …………..(iii)

Subtracting (ii) from (i), and we get –

                 41x + 37y = 86

                 37x + 41y = 70

              ------------------

                   4x – 4y = 16

=>          4(x – y) = 16

=>            x – y =  4  ………………... (iv)

Adding, (iii) & (iv) and we get – 

                x + y = 2

                x – y = 4

           ---------------

                  2x = 6

=>           x = 3

Now, we will substitute x in (iv), and we get –

        x – y = 4

=>     3 – y = 4

=>         y = - 1

Hence, x = 3 and y = -1 is the solutions of the given equations.  (Ans.)